If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35v^2+54v+7=0
a = 35; b = 54; c = +7;
Δ = b2-4ac
Δ = 542-4·35·7
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-44}{2*35}=\frac{-98}{70} =-1+2/5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+44}{2*35}=\frac{-10}{70} =-1/7 $
| 2(3x-1)-5(2-x)=7 | | 168=126-v | | 9-(1-3y)=4+y-(3-2y) | | 95=-w+257 | | 1000+5x=2000 | | 1-2/3(3w-5)=2/3(w-2)+1/6w | | 4x+5=200-x | | H(x)=2/3x+4 | | x+1/10=10/11 | | 5+a÷3=-1 | | 3/5-s=-1/6 | | 4x+10-1/2x=22 | | 3x+85=-80 | | 15x-300=80 | | 5d-1.2=2.8 | | 10-5p/50=30 | | 9x+2.5=7.9 | | 4t-4=8.8 | | 4d+0.4=1.6 | | 9w-2=83 | | 9w=85 | | 2-9w=83 | | (1/5)m=4-(3/10)m | | 2x-2/3=1/3 | | 4-4z=12 | | -21x^2+35x=0 | | 2x+1/4=3 | | (t-2)^2=0 | | -21x^2-35x=0 | | 3(-4)(6)-2(6)(-9)=y | | 0.6y+4=1.4y-12 | | 1/4x-3=1/8x+1 |